Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

The lanthanum(III) molybdate(VI) La₄Mo₇O₂₇

Benjamin van der Wolf,* Peter Held and Petra Becker

Institute of Crystallography, University of Cologne, 50674 Cologne, Germany Correspondence e-mail: bvdwolf@uni-koeln.de

Received 22 June 2009; accepted 7 July 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (La–O) = 0.006 Å; R factor = 0.028; wR factor = 0.076; data-to-parameter ratio = 20.9.

Crystals of the orthorhombic phase $La_4Mo_7O_{27}$ (lanthanum molybdenum oxide) were obtained from a non-stoichiometric melt in the pseudo-ternary system La_2O_3 -MoO₃-B₂O₃. In the crystal structure, distorted square-antiprismatic [LaO₈] and monocapped square-antiprismatic [LaO₉] polyhedra are connected *via* common edges and faces into chains along [010]. These chains are arranged in layers that alternate with layers of [MoO₄] and [MoO₅] polyhedra parallel to (001). In the molybdate layers, a distorted [MoO₅] trigonal bipyramid is axially connected to two [MoO₄] tetrahedra, forming a [Mo₃O₁₁] unit.

Related literature

The isoformular compounds $Eu_4Mo_7O_{27}$ (Naruke & Yamase, 2001) and $Gd_4Mo_7O_{27}$ (Naruke & Yamase, 2002) have a similar structure, but have monoclinic symmetry. Parameters needed to calculate bond-valence sums from bond lengths were taken from Brown & Altermatt (1985).

Experimental

Crystal data La₄Mo₇O₂₇

 $M_r = 1659.22$

Orthorhombic, $Pca2_1$ a = 14.1443 (14) Å b = 7.2931 (4) Å c = 22.9916 (13) Å V = 2371.7 (3) Å³

Data collection

Nonius MACH3 diffractometer Absorption correction: ψ scan (*MolEN*; Fair, 1990) $T_{min} = 0.841, T_{max} = 0.999$ (expected range = 0.080–0.095) 17773 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.076$ S = 1.057202 reflections 345 parameters 1 restraint $\Delta \rho_{\text{max}} = 2.27 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.35 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 3515 Friedel pairs Flack parameter: 0.039 (14)

Data collection: *MACH3* (Enraf–Nonius, 1993); cell refinement: *MACH3*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under project BE 2147/6–1&2.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2242).

References

Brandenburg, K. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Brown, I. D. & Altermatt, D. (1985). *Acta Cryst.* B**41**, 244–247.

Enraf-Nonius (1993). MACH3 Server Software. Enraf-Nonius, Delft, The Netherlands.

Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Naruke, H. & Yamase, T. (2001). J. Solid State Chem. 161, 85-92.

Naruke, H. & Yamase, T. (2002). Acta Cryst. E58, i62-i64.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

inorganic compounds

Mo $K\alpha$ radiation

 $0.25 \times 0.23 \times 0.22 \text{ mm}$

3 standard reflections

every 100 reflections

intensity decay: -4.1%

7202 independent reflections

6225 reflections with $I > 2\sigma(I)$

 $\mu = 10.71 \text{ mm}^-$

T = 295 K

 $R_{\rm int} = 0.042$

Z = 4

Acta Cryst. (2009). E65, i59 [doi:10.1107/S1600536809026415]

The lanthanum(III) molybdate(VI) La₄Mo₇O₂₇

B. van der Wolf, P. Held and P. Becker

Comment

The framework structure of $La_4Mo_7O_{27}$ (Fig. 1) can be described as a layered arrangement of alternating $[LaO_8]$ and $[LaO_9]$ polyhedra and of $[MoO_4]$ and $[MoO_5]$ polyhedra parallel to (001). Perpendicular to this layered arrangement the $[LaO_8]$ and [LaO₉] polyhedra are connected via edge- and face-sharing to form chains along [010]. The chains are interconnected via [MoO₄] tetrahedra with an interchain distance of 1/2a = 7.072 Å. A similar layered arrangement of alternating [REO₇] and $[REO_8]$ (RE = Eu, Gd) and of $[MoO_4]$ and $[MoO_5]$ polyhedra is present in the crystal structures of $Eu_4Mo_7O_{27}$ (Naruke & Yamase, 2001) and Gd₄Mo₇O₂₇ (Naruke & Yamase, 2002). However, in the latter structures the rare earth oxygen polyhedra dimerize to $[RE_2O_{12}]$ and $[RE_2O_{13}]$ (RE = Eu, Gd) groups instead of forming chains. All four lanthanum atoms in La4Mo7O27 are found with a square-antiprismatic [LaO8] oxygen surrounding. In case of La1 and La3, this unit is monocapped to form a [LaO₉] polyhedron, in case of La2 a more irregular but also monocapped (with O33) [LaO₉] polyhedron may still be recognized, while La4 has a square-antiprismatic environment with two axial oxygen atoms O11 (La—O = 3.317(6) Å) and O53 (La— O = 3.423(7) Å) which we have not considered to be part of the La4 coordination polyhedron. Thereby, O53 is the only terminal oxygen atom connected to Mo5 only, but calculations of the bond valence sums (Brown & Altermatt, 1985) with 1.73 v.u. for the O53-Mo5 bond indicate no discrepancies and it can be assumed that the remaining bond charge is smeared out over farther atoms. The four molybdenum atoms Mo1, Mo4, Mo3, Mo6 are tetrahedrally surrounded by oxygen atoms resulting in [MoO₄] tetrahedra with Mo—O distances ranging from 1.723 (7) to 1.805 (6) Å. These polyhedra are connected to [LaO₈] or [LaO₉] polyhedra via corner- or edge-sharing. This is also the case for Mo5 and Mo7, which are tetrahedrally surrounded and connected to [LaO8] or [LaO9] via corner-sharing only, but connected to Mo2 as well, which is fivefold surrounded to form a distorted trigonal bipyramid. Overall, this results in a [Mo₃O₁₁] unit (Fig. 2) with a corner-shared connection of the three equatorial oxygen atoms in the trigonal bipyramid to $[LaO_8]$ or [LaO₉] polyhedra. In the trigonal bipyramid, the axial oxygen atom O52 has the longest Mo—O distance of 2.100 (6) Å in the structure, but bond valence sum calculations do suggest a trigonal-bipyramidal Mo2 surrounding with a resulting bond valence sum for the bonds Mo2-O21, O22, O23, O24 of 5.44 v.u., and when including also O52 of 6.04 v.u. In both Eu₄Mo₇O₂₇ and Gd₄Mo₇O₂₇ structures a similar [Mo₃O₁₁] unit is present, but here the two tetrahedrally surrounded molybdenum atoms are connected via one axial and one equatorial oxygen atom of the trigonal bipyramidal coordination polyhedron of the central molybdenum atom.

Experimental

Single crystals of La₄Mo₇O₂₇ of *ca* 0.01 mm³ in volume were synthesized by heating a homogenized powder mixture of La₂O₃ (99.99%, Chempur), H₃BO₃ (99.8%, Merck) and MoO₃ (99.95%, Alfa Aesar) in a molar ratio of 0.16: 0.16: 0.68 in a covered platinum crucible in air atmosphere to 1023 K. After 95 h at this temperature the sample was quenched in air, washed with water, heated to 1100 K, cooled with 0.0013 K/min to 1093 K and quenched again in air. After a further

similar heating-cooling cycle, colourless clear crystals of $La_4Mo_7O_{27}$ were obtained and separated mechanically from the solidified melt.

Refinement

In the final difference Fourier map the highest peak is 0.98 Å from atom O61 and the deepest hole is 0.78 Å from atom Mo7.

Figures

Fig. 1. Fragment of the crystal structure of La₄Mo₇O₂₇. Atoms are indicated as ellipsoids with probability regions of 50%. [Symmetry codes: (i) -x+1,-y,z+1/2; (ii) -x+1, -y-1, z+1/2; (iii) -x+3/2, y, z+1/2; (iv) x, y+1, z; (v) x, y-1, z; (vi) x-1/2, -y-1, z; (vii) x-1/2, -y, z; (viii) - x+3/2, y-1, z+1/2; (ix) x+1/2, -y, z; (x) x+1/2, -y-1, z.]

Fig. 2. The trigonal-bipyramidal oxygen surrounding of Mo2. The two apical oxygen atoms are linked *via* corner-sharing to the tetrahedrally surrounded Mo5 and Mo7 atoms, forming a $[Mo_3O_{11}]$ unit. Ellipsoid probability regions of 50% are given.

Lanthanum molybdate oxide

Crystal data

$F_{000} = 2952$
$D_{\rm x} = 4.647 {\rm Mg m}^{-3}$
Mo Ka radiation, $\lambda = 0.71073$ Å
Cell parameters from 25 reflections
$\theta = 20.8 - 27.4^{\circ}$
$\mu = 10.71 \text{ mm}^{-1}$
T = 295 K
Prism, colourless
$0.25\times0.23\times0.22~mm$

Data collection

Nonius MACH3 diffractometer	$R_{\rm int} = 0.042$
Monochromator: graphite	$\theta_{\text{max}} = 30.4^{\circ}$
T = 295 K	$\theta_{\min} = 2.8^{\circ}$
$\omega/2\theta$ scans	$h = -20 \rightarrow 20$
Absorption correction: ψ scan (MolEN; Fair, 1990)	$k = -10 \rightarrow 10$
$T_{\min} = 0.841, \ T_{\max} = 0.999$	$l = -32 \rightarrow 32$
17773 measured reflections	3 standard reflections
7202 independent reflections	every 100 reflections
6225 reflections with $I > 2\sigma(I)$	intensity decay: -4.1%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.04P)^2 + 3.1563P]$
	where $P = (F_0^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.028$	$(\Delta/\sigma)_{\rm max} = 0.001$
$wR(F^2) = 0.076$	$\Delta \rho_{max} = 2.27 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.05	$\Delta \rho_{\rm min} = -1.35 \text{ e } \text{\AA}^{-3}$
7202 reflections	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
345 parameters	Extinction coefficient: 0.00021 (2)
1 restraint	Absolute structure: Flack (1983), 3515 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.039 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
La1	0.66087 (3)	0.01728 (6)	-0.111991 (17)	0.00665 (9)
La2	0.53737 (3)	-0.51499 (6)	-0.346670 (18)	0.00663 (8)
La3	0.40385 (3)	-0.00377 (6)	-0.348693 (18)	0.00607 (8)
La4	0.79779 (3)	-0.49072 (6)	-0.105332 (18)	0.00796 (9)
Mo1	0.56718 (5)	-0.50458 (8)	-0.17097 (3)	0.00648 (12)
Mo2	0.52350 (5)	-0.21023 (9)	-0.48626 (3)	0.00797 (12)
Mo3	0.63252 (5)	-0.01478 (9)	-0.28977 (3)	0.00647 (12)
Mo4	0.88677 (5)	-0.00727 (8)	-0.16706 (3)	0.00596 (12)
Mo5	0.42705 (5)	-0.67540 (9)	-0.50044 (3)	0.00924 (12)
M06	0.80799 (5)	-0.48959 (8)	-0.29088 (3)	0.00678 (12)
Mo7	0.69027 (5)	0.18663 (9)	-0.46606 (3)	0.00880 (12)
011	0.6097 (5)	-0.2827 (9)	-0.1607 (3)	0.0194 (13)
O12	0.5618 (5)	-0.5645 (9)	-0.2443 (2)	0.0153 (12)
O13	0.9529 (4)	-0.4730 (10)	-0.1422 (3)	0.0217 (15)
O14	0.6456 (4)	0.3508 (8)	-0.1297 (2)	0.0112 (11)
O21	0.6007 (4)	-0.3416 (9)	-0.5274 (3)	0.0157 (12)
022	0.4384 (4)	-0.0813 (9)	-0.5225 (3)	0.0158 (12)

O23	0.5073 (4)	-0.2372 (8)	-0.4093 (2)	0.0120 (11)
O24	0.6147 (5)	-0.0175 (8)	-0.4721 (3)	0.0155 (12)
O31	0.6554 (5)	0.0575 (9)	-0.2186 (2)	0.0148 (12)
O32	0.5662 (4)	-0.8518 (8)	-0.3325 (2)	0.0118 (11)
O33	0.5583 (4)	-0.2059 (8)	-0.2937 (3)	0.0131 (12)
O34	0.2400 (4)	0.0632 (9)	-0.3232 (3)	0.0169 (13)
O41	0.4954 (5)	0.0377 (10)	-0.1345 (3)	0.0185 (13)
O42	0.4018 (5)	0.0247 (10)	-0.2425 (3)	0.0198 (14)
O43	0.8293 (5)	0.1988 (9)	-0.1478 (3)	0.0193 (14)
O44	0.8030 (4)	-0.1691 (8)	-0.1377 (3)	0.0120 (11)
O51	0.4290 (5)	-0.7789 (10)	-0.4302 (3)	0.0236 (15)
O52	0.4298 (4)	-0.4333 (8)	-0.4899 (3)	0.0189 (13)
O53	0.5258 (5)	-0.7338 (9)	-0.5387 (3)	0.0191 (13)
O54	0.3242 (5)	-0.7323 (8)	-0.5428 (3)	0.0137 (12)
O61	0.7039 (5)	-0.4836 (9)	-0.3311 (3)	0.0166 (13)
O62	0.7826 (5)	-0.4752 (9)	-0.2169 (3)	0.0153 (13)
O63	0.3730 (5)	-0.3124 (9)	-0.3092 (3)	0.0215 (14)
O64	0.3901 (5)	-0.6789 (9)	-0.3162 (3)	0.0173 (13)
O71	0.6315 (5)	0.3739 (8)	-0.4350 (3)	0.0164 (13)
072	0.7380 (4)	0.2446 (8)	-0.5355 (3)	0.0141 (12)
O73	0.7859 (5)	0.1294 (9)	-0.4229 (3)	0.0189 (13)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
La1	0.00731 (18)	0.00518 (17)	0.00747 (19)	0.00098 (14)	0.00029 (15)	0.00006 (17)
La2	0.00777 (18)	0.00519 (18)	0.00694 (18)	0.00041 (14)	-0.00001 (15)	0.00120 (17)
La3	0.00763 (18)	0.00497 (18)	0.00560 (17)	-0.00037 (14)	0.00081 (15)	-0.00027 (15)
La4	0.0102 (2)	0.00603 (19)	0.00765 (19)	-0.00306 (15)	0.00111 (15)	-0.00116 (16)
Mo1	0.0075 (3)	0.0049 (3)	0.0070 (3)	0.0002 (2)	-0.0010 (2)	-0.0005 (2)
Mo2	0.0105 (3)	0.0084 (3)	0.0050 (3)	0.0013 (2)	0.0007 (2)	0.0003 (2)
Mo3	0.0072 (3)	0.0059 (3)	0.0063 (3)	0.0004 (2)	-0.0009 (2)	0.0008 (2)
Mo4	0.0063 (3)	0.0051 (3)	0.0065 (3)	-0.0005 (2)	0.0011 (2)	0.0000 (2)
Mo5	0.0138 (3)	0.0077 (3)	0.0062 (3)	-0.0019 (2)	-0.0017 (2)	-0.0001 (2)
Mo6	0.0069 (3)	0.0061 (3)	0.0073 (3)	-0.0007 (2)	0.0006 (2)	-0.0009 (2)
Mo7	0.0104 (3)	0.0103 (3)	0.0058 (2)	-0.0017 (2)	-0.0001 (2)	0.0017 (2)
O11	0.031 (4)	0.013 (3)	0.014 (3)	-0.004 (3)	0.003 (3)	-0.002 (2)
O12	0.030 (4)	0.012 (3)	0.004 (2)	-0.004 (3)	-0.003 (2)	-0.002 (2)
O13	0.006 (3)	0.031 (4)	0.028 (4)	-0.001 (3)	0.005 (3)	0.000 (3)
O14	0.009 (3)	0.011 (3)	0.014 (3)	0.000 (2)	-0.002 (2)	-0.002 (2)
O21	0.012 (3)	0.015 (3)	0.020 (3)	-0.001 (2)	0.008 (2)	-0.007 (2)
O22	0.012 (3)	0.021 (3)	0.015 (3)	-0.002 (2)	-0.006 (2)	0.004 (2)
O23	0.018 (3)	0.010 (3)	0.008 (3)	0.004 (2)	0.002 (2)	0.001 (2)
O24	0.014 (3)	0.015 (3)	0.018 (3)	-0.007 (2)	0.000 (3)	0.001 (2)
O31	0.024 (3)	0.015 (3)	0.006 (2)	-0.001 (3)	-0.006 (2)	0.000 (2)
O32	0.012 (3)	0.009 (3)	0.015 (3)	0.004 (2)	-0.005 (2)	0.002 (2)
O33	0.014 (3)	0.011 (3)	0.014 (3)	-0.006 (2)	-0.001 (2)	0.000 (2)
O34	0.008 (3)	0.023 (3)	0.020 (3)	0.000 (2)	0.003 (2)	-0.002 (3)

O41	0.012 (3)	0.025 (3)	0.018 (3)	0.005 (3)	-0.004 (2)	0.000 (3)
O42	0.028 (4)	0.023 (3)	0.009 (3)	0.001 (3)	0.001 (2)	0.001 (2)
O43	0.026 (4)	0.013 (3)	0.019 (3)	0.002 (3)	-0.004 (3)	-0.010 (2)
O44	0.011 (3)	0.008 (2)	0.017 (3)	0.001 (2)	0.005 (2)	-0.004 (2)
O51	0.029 (4)	0.031 (4)	0.011 (3)	0.000 (3)	0.001 (3)	0.010 (3)
O52	0.015 (3)	0.008 (3)	0.034 (4)	-0.003 (2)	0.005 (3)	-0.006 (3)
O53	0.025 (4)	0.016 (3)	0.015 (3)	0.004 (3)	0.003 (3)	-0.006 (2)
O54	0.015 (3)	0.014 (3)	0.011 (3)	-0.002 (2)	-0.006 (2)	0.000 (2)
O61	0.010 (3)	0.027 (4)	0.012 (3)	0.000 (3)	-0.005 (2)	-0.001 (2)
O62	0.022 (3)	0.018 (3)	0.006 (2)	0.004 (3)	0.002 (2)	0.000 (2)
O63	0.028 (4)	0.015 (3)	0.021 (3)	-0.004 (3)	0.003 (3)	0.007 (3)
O64	0.013 (3)	0.009 (3)	0.029 (3)	0.000 (2)	0.001 (3)	-0.004 (3)
O71	0.021 (3)	0.015 (3)	0.014 (3)	0.003 (2)	-0.002 (2)	-0.005 (2)
072	0.012 (3)	0.021 (3)	0.010 (3)	0.003 (2)	0.001 (2)	0.003 (2)
O73	0.015 (3)	0.024 (3)	0.018 (3)	-0.003 (3)	-0.004 (2)	0.008 (3)

Geometric parameters (Å, °)

La1—O41	2.402 (7)	La4—O14 ^v	2.506 (6)
La1—O31	2.470 (6)	La4—O21 ⁱⁱⁱ	2.540 (6)
La1—O14	2.476 (6)	La4—O72 ^{viii}	2.561 (6)
La1—O44	2.498 (6)	La4—O62	2.578 (6)
La1—O22 ⁱ	2.535 (6)	La4—O54 ⁱⁱ	2.773 (6)
La1—O11	2.562 (6)	La4—Mo1	3.5955 (9)
La1—O54 ⁱⁱ	2.625 (6)	La4—La1 ^v	4.0804 (6)
La1—O72 ⁱⁱⁱ	2.809 (6)	Mo1—O11	1.742 (6)
La1—O43	2.847 (7)	Mo1—O12	1.742 (6)
La1—Mo4	3.4416 (9)	Mo1—O13 ^{vi}	1.754 (6)
La1—La4 ^{iv}	4.0804 (6)	Mo1—O14 ^v	1.801 (6)
La1—La4	4.1834 (7)	Mo2—O21	1.734 (6)
La2—O61	2.394 (6)	Mo2—O22	1.740 (6)
La2—O12	2.407 (6)	Mo2—O23	1.796 (6)
La2—O64	2.502 (7)	Mo2—O24	1.936 (6)
La2—O32	2.511 (6)	Mo2—O52	2.100 (6)
La2—O23	2.521 (6)	Mo3—O34 ^{ix}	1.740 (6)
La2—O71 ^v	2.559 (6)	Mo3—O33	1.747 (6)
La2—O33	2.579 (6)	Mo3—O31	1.749 (6)
La2—O63	2.886 (7)	Mo3—O32 ^{iv}	1.805 (6)
La2—O51	3.121 (7)	Mo4—O41 ^{ix}	1.723 (7)
La2—Mo6 ^{vi}	3.4889 (9)	Mo4—O42 ^{ix}	1.753 (6)
La2—La3 ^v	4.0344 (6)	Mo4—O43	1.765 (6)
La2—La3	4.1797 (6)	Mo4—O44	1.804 (6)
La3—O34	2.439 (6)	Mo5—O53	1.704 (7)
La3—O42	2.450 (6)	Mo5—O52	1.782 (6)
La3—O63	2.466 (6)	Mo5—O51	1.784 (6)
La3—O64 ^{iv}	2.492 (6)	Mo5—O54	1.799 (6)

La3—O51 ^{iv}	2.515 (6)	Mo6—O61	1.739 (6)
La3—O73 ^{vii}	2.557 (6)	Mo6—O62	1.741 (6)
La3—O32 ^{iv}	2.577 (6)	Mo6—O63 ^x	1.763 (7)
La3—O23	2.642 (6)	Mo6—O64 ^x	1.788 (6)
La3—O33	2.923 (6)	Mo6—La2 ^x	3.4889 (9)
La3—Mo3	3.5076 (9)	Mo7—O73	1.728 (6)
La3—La2 ^{iv}	4.0344 (6)	Mo7—O71	1.752 (6)
La4—O13	2.356 (6)	Mo7—O72	1.784 (6)
La4—044	2.462 (6)	Mo7—O24	1.838 (6)
La4—O43 ^v	2.505 (6)		
O41—La1—O31	75.5 (2)	O51 ^{iv} —La3—O32 ^{iv}	72.6 (2)
O41—La1—O14	79.6 (2)	O73 ^{vii} —La3—O32 ^{iv}	146.4 (2)
O31—La1—O14	73.56 (19)	O34—La3—O23	141.4 (2)
O41—La1—O44	140.1 (2)	O42—La3—O23	125.9 (2)
O31—La1—O44	81.7 (2)	O63—La3—O23	72.8 (2)
O14—La1—O44	124.46 (19)	O64 ^{iv} —La3—O23	144.5 (2)
O41—La1—O22 ⁱ	67.9 (2)	O51 ^{iv} —La3—O23	87.1 (2)
O31—La1—O22 ⁱ	140.0 (2)	O73 ^{vii} —La3—O23	77.2 (2)
O14—La1—O22 ⁱ	84.5 (2)	O32 ^{iv} —La3—O23	81.95 (19)
O44—La1—O22 ⁱ	137.6 (2)	O34—La3—O33	135.00 (19)
O41—La1—O11	71.6 (2)	O42—La3—O33	67.7 (2)
O31—La1—O11	70.1 (2)	O63—La3—O33	60.8 (2)
O14—La1—O11	137.9 (2)	O64 ^{iv} —La3—O33	114.10 (19)
O44—La1—O11	70.1 (2)	O51 ^{iv} —La3—O33	123.0 (2)
O22 ⁱ —La1—O11	110.8 (2)	O73 ^{vii} —La3—O33	126.56 (19)
O41—La1—O54 ⁱⁱ	104.9 (2)	O32 ^{iv} —La3—O33	59.22 (17)
O31—La1—O54 ⁱⁱ	134.2 (2)	O23—La3—O33	59.25 (17)
O14—La1—O54 ⁱⁱ	152.20 (19)	O13—La4—O44	79.1 (2)
O44—La1—O54 ⁱⁱ	69.36 (19)	O13—La4—O43 ^v	75.1 (2)
O22 ⁱ —La1—O54 ⁱⁱ	72.5 (2)	O44—La4—O43 ^v	137.6 (2)
011—La1—054 ⁱⁱ	67.1 (2)	O13—La4—O14 ^v	138.1 (2)
O41—La1—O72 ⁱⁱⁱ	126.5 (2)	O44—La4—O14 ^v	113.4 (2)
O31—La1—O72 ⁱⁱⁱ	124.6 (2)	O43 ^v —La4—O14 ^v	69.5 (2)
O14—La1—O72 ⁱⁱⁱ	64.38 (18)	O13—La4—O21 ⁱⁱⁱ	72.8 (2)
O44—La1—O72 ⁱⁱⁱ	93.38 (19)	O44—La4—O21 ⁱⁱⁱ	77.8 (2)
O22 ⁱ —La1—O72 ⁱⁱⁱ	70.44 (19)	O43 ^v —La4—O21 ⁱⁱⁱ	124.1 (2)
011—La1—072 ⁱⁱⁱ	157.2 (2)	O14 ^v —La4—O21 ⁱⁱⁱ	147.2 (2)
O54 ⁱⁱ —La1—O72 ⁱⁱⁱ	92.70 (18)	O13—La4—O72 ^{viii}	116.8 (2)
O41—La1—O43	136.4 (2)	O44—La4—O72 ^{viii}	155.97 (19)
O31—La1—O43	71.6 (2)	O43 ^v —La4—O72 ^{viii}	66.3 (2)
O14—La1—O43	64.43 (19)	$O14^{v}$ —La4— $O72^{viii}$	67.87 (19)
O44—La1—O43	60.74 (19)	021^{iii} 1 24 072 ^{viii}	89.5 (2)
		021 Lut 0/2	(-)

O22 ⁱ —La1—O43	127.78 (19)	O13—La4—O62	73.5 (2)
O11—La1—O43	120.5 (2)	O44—La4—O62	70.1 (2)
O54 ⁱⁱ —La1—O43	118.4 (2)	O43 ^v —La4—O62	70.5 (2)
O72 ⁱⁱⁱ —La1—O43	58.68 (17)	O14 ^v —La4—O62	74.1 (2)
O61—La2—O12	74.2 (2)	O21 ⁱⁱⁱ —La4—O62	136.9 (2)
O61—La2—O64	145.4 (2)	O72 ^{viii} —La4—O62	129.9 (2)
O12—La2—O64	76.9 (2)	O13—La4—O54 ⁱⁱ	137.2 (2)
O61—La2—O32	85.1 (2)	O44—La4—O54 ⁱⁱ	67.43 (18)
O12—La2—O32	72.7 (2)	O43 ^v —La4—O54 ⁱⁱ	147.4 (2)
O64—La2—O32	68.4 (2)	O14 ^v —La4—O54 ⁱⁱ	81.49 (19)
O61—La2—O23	100.1 (2)	O21 ⁱⁱⁱ —La4—O54 ⁱⁱ	74.64 (19)
O12—La2—O23	134.7 (2)	072^{viii} —La4— 054^{ii}	89.67 (18)
O64—La2—O23	113.8 (2)	062—La4—054 ⁱⁱ	115.98 (19)
O32—La2—O23	152.58 (19)	O11—Mo1—O12	112.3 (3)
O61—La2—O71 ^v	68.7 (2)	O11—Mo1—O13 ^{vi}	110.7 (3)
O12—La2—O71 ^v	130.8 (2)	O12—Mo1—O13 ^{vi}	107.5 (3)
O64—La2—O71 ^v	120.3 (2)	011—Mo1—014 ^v	105.1 (3)
O32—La2—O71 ^v	73.1 (2)	012—Mo1—014 ^v	112.9 (3)
O23—La2—O71 ^v	83.65 (19)	O13 ^{vi} —Mo1—O14 ^v	108.4 (3)
O61—La2—O33	74.5 (2)	O21—Mo2—O22	118.2 (3)
O12—La2—O33	69.7 (2)	O21—Mo2—O23	123.9 (3)
O64—La2—O33	112.4 (2)	O22—Mo2—O23	116.3 (3)
O32—La2—O33	140.80 (18)	O21—Mo2—O24	94.2 (3)
O23—La2—O33	65.57 (19)	O22—Mo2—O24	98.6 (3)
O71 ^v —La2—O33	126.2 (2)	O23—Mo2—O24	90.0 (3)
O61—La2—O63	134.4 (2)	O21—Mo2—O52	87.0 (3)
O12—La2—O63	84.3 (2)	O22—Mo2—O52	87.9 (3)
O64—La2—O63	59.4 (2)	O23—Mo2—O52	82.8 (3)
O32—La2—O63	126.34 (19)	O24—Mo2—O52	171.9 (3)
O23—La2—O63	67.86 (18)	O34 ^{ix} —Mo3—O33	109.9 (3)
O71 ^v —La2—O63	144.88 (19)	O34 ^{ix} —Mo3—O31	108.2 (3)
O33—La2—O63	60.28 (19)	O33—Mo3—O31	113.6 (3)
O61—La2—O51	129.4 (2)	O34 ^{ix} —Mo3—O32 ^{iv}	110.3 (3)
O12—La2—O51	125.4 (2)	O33—Mo3—O32 ^{iv}	100.7 (3)
O64—La2—O51	57.9 (2)	O31—Mo3—O32 ^{iv}	114.0 (3)
O32—La2—O51	63.67 (18)	O41 ^{ix} —Mo4—O42 ^{ix}	108.2 (3)
O23—La2—O51	93.53 (18)	O41 ^{ix} —Mo4—O43	114.2 (3)
071 ^v —La2—051	64.7 (2)	O42 ^{ix} —Mo4—O43	111.5 (3)
O33—La2—O51	152.36 (19)	O41 ^{ix} —Mo4—O44	109.7 (3)
O63—La2—O51	96.0 (2)	O42 ^{ix} —Mo4—O44	113.8 (3)
O34—La3—O42	74.5 (2)	O43—Mo4—O44	99.3 (3)
O34—La3—O63	85.8 (2)	O53—Mo5—O52	107.4 (3)
O42—La3—O63	73.0 (2)	O53—Mo5—O51	110.4 (3)

O34—La3—O64 ^{iv}	70.3 (2)	O52—Mo5—O51	107.2 (3)
O42—La3—O64 ^{iv}	67.6 (2)	O53—Mo5—O54	109.0 (3)
O63—La3—O64 ^{iv}	138.0 (2)	O52—Mo5—O54	108.6 (3)
O34—La3—O51 ^{iv}	100.5 (2)	O51—Mo5—O54	113.9 (3)
O42—La3—O51 ^{iv}	133.5 (2)	O61—Mo6—O62	110.1 (3)
O63—La3—O51 ^{iv}	153.4 (2)	O61—Mo6—O63 ^x	109.6 (3)
O64 ^{iv} —La3—O51 ^{iv}	67.3 (2)	O62—Mo6—O63 ^x	113.0 (3)
O34—La3—O73 ^{vii}	67.2 (2)	O61—Mo6—O64 ^x	111.1 (3)
O42—La3—O73 ^{vii}	133.4 (2)	O62—Mo6—O64 ^x	114.2 (3)
O63—La3—O73 ^{vii}	78.7 (2)	O63 ^x —Mo6—O64 ^x	98.4 (3)
O64 ^{iv} —La3—O73 ^{vii}	119.3 (2)	O73—Mo7—O71	109.0 (3)
O51 ^{iv} —La3—O73 ^{vii}	80.2 (2)	O73—Mo7—O72	106.0 (3)
O34—La3—O32 ^{iv}	136.5 (2)	O71—Mo7—O72	111.1 (3)
O42—La3—O32 ^{iv}	80.2 (2)	O73—Mo7—O24	107.6 (3)
O63—La3—O32 ^{iv}	119.8 (2)	O71—Mo7—O24	112.8 (3)
O64 ^{iv} —La3—O32 ^{iv}	67.5 (2)	O72—Mo7—O24	110.1 (3)

Symmetry codes: (i) -*x*+1, -*y*, *z*+1/2; (ii) -*x*+1, -*y*-1, *z*+1/2; (iii) -*x*+3/2, *y*, *z*+1/2; (iv) *x*, *y*+1, *z*; (v) *x*, *y*-1, *z*; (vi) *x*-1/2, -*y*-1, *z*; (vii) *x*-1/2, -*y*, *z*; (viii) -*x*+3/2, *y*-1, *z*+1/2; (ix) *x*+1/2, -*y*, *z*; (x) *x*+1/2, -*y*-1, *z*.

Fig. 1

Fig. 2

